Tag

VaR Archives - Análise Macro

{tidyverts}: séries temporais no R

By | Data Science

{tidyverts} é uma família de pacotes de R criada para ser a próxima geração de ferramentas para modelagem e previsão de séries temporais, substituindo o famoso pacote {forecast}.

Utilizando uma interface simples e integrada com os pacotes do tidyverse, é possível construir uma ampla gama de modelos de previsão univariados e multivariados: ARIMA, VAR, suavização exponencial via espaço de estado (ETS), modelo linear (TSLM), autorregressivo (AR), passeio aleatório (RW), autoregressão de rede neural (NNETAR), Prophet, etc.

Neste exercício, daremos uma breve introdução aplicada a modelagem e previsão de séries temporais usando os pacotes do {tidyverts}.

Conhecendo os pacotes

Um breve resumo do que a família de pacotes do {tidyverts} tem a oferecer:

fable

  • Coleção de modelos univariados e multivariados de previsão
  • Modelagem de séries temporais em formato "tidy"
  • Especificação de modelos utiliza terminologia de fórmula (y ~ x)

fabletools

  • Extensões e ferramentas para construção de modelos
  • Combinação de modelos, previsão hierárquica e extração de resultados
  • Obtenção de medidas de acurácia e visualização de dados

feasts

  • Decomposição de séries temporais
  • Extração e visualização de componentes de séries temporais
  • Análise de autocorrelação, testes de raiz unitária, etc.

tsibble

  • Estrutura de dados tidy para séries temporais no R
  • Funções para tratamento de dados
  • Objeto orientado aos dados e a modelos, integrado ao tidyverse

Fluxo de trabalho para previsão

Com o tidyverts o processo de construir um modelo de previsão pode ser dividido em poucos passos:

Com esse esquema em mente, vamos ilustrar esse processo com um exercício prático e didático: construir um modelo de previsão para a taxa de crescimento do PIB brasileiro.

Pacotes

Para reproduzir o exercício a seguir você precisará dos seguintes pacotes:

Dados tidy

Utilizaremos o dataset global_economy armazenado como um objeto tsibble, trazendo variáveis econômicas em frequência anual para diversos países. Nosso interesse é a série da taxa de crescimento do PIB brasileiro:

Visualização de dados

Visualização é uma etapa essencial para entender os dados, o que permite identificar padrões e modelos apropriados. No nosso exemplo, criamos um gráfico de linha para plotar a série do PIB brasileiro usando a função autoplot():

Podemos também plotar os correlogramas ACF e PACF para identificar o processo estocástico da série, obtendo alguns modelos candidatos:

Especificação do modelo

Existem muitos modelos de séries temporais diferentes que podem ser usados para previsão, e especificar um modelo apropriado para os dados é essencial para produzir previsões.

Os modelos no framework do fable são especificados usando funções com nomenclatura abreviada do nome do modelo (por exemplo, ARIMA(), AR(), VAR(), etc.), cada uma usando uma interface de fórmula (y ~ x). As variáveis de resposta são especificadas à esquerda da fórmula e a estrutura do modelo é escrita à direita.

Por exemplo, um modelo ARIMA(1,0,2) para a taxa de crescimento do PIB pode ser especificado com: ARIMA(Growth ~ pdq(1, 0, 2)).

Neste caso, a variável resposta é Growth e está sendo modelada usando a estrutura de um modelo ARMA(1, 2) especificada na função especial pdq().

Existem diversas funções especiais para definir a estrutura do modelo e em ambos os lados da fórmula pode ser aplicado transformações. Consulte detalhes da documentação do fable.

Estimar o modelo

Identificado um modelo (ou mais) apropriado, podemos em seguida fazer a estimação usando a função model()1.Neste exemplo, estimaremos os seguintes modelos: ARIMA(1,0,2), ARIMA(1,0,0), ARIMA(0,0,2), o algoritmo de seleção automatizada do auto ARIMA criado pelo prof. Rob Hyndman e um passeio aleatório.

Diagnóstico do modelo

O objeto resultante é uma "tabela de modelo" ou mable, com a saída de cada modelo em cada coluna:

Para obter os critérios de informação use a função glance():

Os critérios de informação indicam que, dos modelos estimados, o modelo automatizado ARIMA(1,1,1) apresentou o menor valor de AICc - seguido pelos demais identificados pelos correlogramas ACF e PACF. Com a função gg_tsresiduals() podemos verificar o comportamento dos resíduos deste modelo, indicando que os resíduos se comportam como ruído branco:

Um teste de autocorrelação (Ljung Box) retorna um p-valor grande, também indicando que os resíduos são ruído branco:

Também pode ser interessante visualizar o ajuste do modelo. Utilize a função augment() para obter os valores estimados:

Previsão

Com o modelo escolhido, previsões podem ser geradas com a função forecast() indicando um horizonte de escolha.

Perceba que os pontos de previsão médios gerados são bastante similares a um processo de passeio aleatório (equivalente a um ARIMA(0,1,0)). O trabalho adicional de especificar termos AR e MA trouxe pouca diferença para os pontos de previsão neste exemplo, apesar de ser perceptível que os intervalos de confiança do modelo auto ARIMA são mais estreitos do que de um passeio aleatório.

Além disso, a previsão fora da amostra gerada ficou bastante aquém dos dados reais para a taxa de crescimento do PIB brasileiro observados no horizonte em questão, configurando apenas um exercício didático.

Saiba mais

Estes são apenas alguns dos recursos e ferramentas disponíveis na família de pacotes do tidyverts. Para uma referência aprofundada, confira o livro Forecasting: Principles and Practice, 3rd Edition, de Hyndman e Athanasopoulos (2021).

Aprenda com maior profundidade sobre sobre os temas abordados nos cursos de Séries Temporais e de Previsão Macro. Faça parte do Clube AM para acesso completo aos códigos de R e Python deste e de outros exercícios.

Confira outros exercícios aplicados com pacotes do tidyverts:

 


[1] A função suporta estimação dos modelos com computação paralela usando o pacote future, veja detalhes na documentação e este post para saber mais sobre o tema.

 

 

{tidyverts}: séries temporais no R

By | Data Science

{tidyverts} é uma família de pacotes de R criada para ser a próxima geração de ferramentas para modelagem e previsão de séries temporais, substituindo o famoso pacote {forecast}.

Utilizando uma interface simples e integrada com os pacotes do tidyverse, é possível construir uma ampla gama de modelos de previsão univariados e multivariados: ARIMA, VAR, suavização exponencial via espaço de estado (ETS), modelo linear (TSLM), autorregressivo (AR), passeio aleatório (RW), autoregressão de rede neural (NNETAR), Prophet, etc.

Neste exercício, daremos uma breve introdução aplicada a modelagem e previsão de séries temporais usando os pacotes do {tidyverts}.

Conhecendo os pacotes

Um breve resumo do que a família de pacotes do {tidyverts} tem a oferecer:

fable

  • Coleção de modelos univariados e multivariados de previsão
  • Modelagem de séries temporais em formato "tidy"
  • Especificação de modelos utiliza terminologia de fórmula (y ~ x)

fabletools

  • Extensões e ferramentas para construção de modelos
  • Combinação de modelos, previsão hierárquica e extração de resultados
  • Obtenção de medidas de acurácia e visualização de dados

feasts

  • Decomposição de séries temporais
  • Extração e visualização de componentes de séries temporais
  • Análise de autocorrelação, testes de raiz unitária, etc.

tsibble

  • Estrutura de dados tidy para séries temporais no R
  • Funções para tratamento de dados
  • Objeto orientado aos dados e a modelos, integrado ao tidyverse

Fluxo de trabalho para previsão

Com o tidyverts o processo de construir um modelo de previsão pode ser dividido em poucos passos:

Com esse esquema em mente, vamos ilustrar esse processo com um exercício prático e didático: construir um modelo de previsão para a taxa de crescimento do PIB brasileiro.

Pacotes

Para reproduzir o exercício a seguir você precisará dos seguintes pacotes:

library(fable) # CRAN v0.3.1
library(fabletools) # CRAN v0.3.2
library(tsibble) # CRAN v1.1.1
library(tsibbledata) # CRAN v0.4.0
library(feasts) # CRAN v0.2.2
library(dplyr) # CRAN v1.0.7
library(tidyr) # CRAN v1.2.0
library(ggplot2) # CRAN v3.3.5

 

Dados tidy

Utilizaremos o dataset global_economy armazenado como um objeto tsibble, trazendo variáveis econômicas em frequência anual para diversos países. Nosso interesse é a série da taxa de crescimento do PIB brasileiro:

pib_br <- tsibbledata::global_economy %>% 
dplyr::filter(Country == "Brazil") %>% 
dplyr::select(Year, Growth) %>% 
tidyr::drop_na()
pib_br

# # A tsibble: 57 x 2 [1Y]
# Year Growth
# <dbl> <dbl>
# 1 1961 10.3 
# 2 1962 5.22 
# 3 1963 0.875
# 4 1964 3.49 
# 5 1965 3.05 
# 6 1966 4.15 
# 7 1967 4.92 
# 8 1968 11.4 
# 9 1969 9.74 
# 10 1970 8.77 
# # ... with 47 more rows

Visualização de dados

Visualização é uma etapa essencial para entender os dados, o que permite identificar padrões e modelos apropriados. No nosso exemplo, criamos um gráfico de linha para plotar a série do PIB brasileiro usando a função autoplot():

pib_br %>% 
fabletools::autoplot(Growth) +
ggplot2::labs(title = "Crescimento anual do PIB do Brasil", y = "%")

Podemos também plotar os correlogramas ACF e PACF para identificar o processo estocástico da série, obtendo alguns modelos candidatos:

pib_br %>% 
feasts::gg_tsdisplay(Growth, plot_type = "partial")

Especificação do modelo

Existem muitos modelos de séries temporais diferentes que podem ser usados para previsão, e especificar um modelo apropriado para os dados é essencial para produzir previsões.

Os modelos no framework do fable são especificados usando funções com nomenclatura abreviada do nome do modelo (por exemplo, ARIMA(), AR(), VAR(), etc.), cada uma usando uma interface de fórmula (y ~ x). As variáveis de resposta são especificadas à esquerda da fórmula e a estrutura do modelo é escrita à direita.

Por exemplo, um modelo ARIMA(1,0,2) para a taxa de crescimento do PIB pode ser especificado com: ARIMA(Growth ~ pdq(1, 0, 2)).

Neste caso, a variável resposta é Growth e está sendo modelada usando a estrutura de um modelo ARMA(1, 2) especificada na função especial pdq().

Existem diversas funções especiais para definir a estrutura do modelo e em ambos os lados da fórmula pode ser aplicado transformações. Consulte detalhes da documentação do fable.

Estimar o modelo

Identificado um modelo (ou mais) apropriado, podemos em seguida fazer a estimação usando a função model()1.Neste exemplo, estimaremos os seguintes modelos: ARIMA(1,0,2), ARIMA(1,0,0), ARIMA(0,0,2), o algoritmo de seleção automatizada do auto ARIMA criado pelo prof. Rob Hyndman e um passeio aleatório.


fit <- pib_br %>%
fabletools::model(
arima102 = fable::ARIMA(Growth ~ pdq(1, 0, 2)),
arima100 = fable::ARIMA(Growth ~ pdq(1, 0, 0)),
arima002 = fable::ARIMA(Growth ~ pdq(0, 0, 2)),
auto_arima = fable::ARIMA(Growth),
random_walk = fable::RW(Growth)
)

Diagnóstico do modelo

O objeto resultante é uma "tabela de modelo" ou mable, com a saída de cada modelo em cada coluna:


fit

# # A mable: 1 x 5
# arima102 arima100 arima002
# <model> <model> <model>
# 1 <ARIMA(1,0,2) w/ mean> <ARIMA(1,0,0) w/ mean> <ARIMA(0,0,2) w/ mean>
# # ... with 2 more variables: auto_arima <model>, random_walk <model>

Para obter os critérios de informação use a função glance():


fabletools::glance(fit) %>% dplyr::arrange(AICc)

# # A tibble: 5 x 8
# .model sigma2 log_lik AIC AICc BIC ar_roots ma_roots
# <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <list> <list>
# 1 auto_arima 12.8 -150. 307. 307. 313. <cpl [1]> <cpl [1]>
# 2 arima100 12.6 -152. 311. 311. 317. <cpl [1]> <cpl [0]>
# 3 arima102 12.8 -152. 313. 314. 323. <cpl [1]> <cpl [2]>
# 4 arima002 13.1 -153. 314. 315. 322. <cpl [0]> <cpl [2]>
# 5 random_walk 16.0 NA NA NA NA <NULL> <NULL>

Os critérios de informação indicam que, dos modelos estimados, o modelo automatizado ARIMA(1,1,1) apresentou o menor valor de AICc - seguido pelos demais identificados pelos correlogramas ACF e PACF. Com a função gg_tsresiduals() podemos verificar o comportamento dos resíduos deste modelo, indicando que os resíduos se comportam como ruído branco:


fit %>%
dplyr::select(auto_arima) %>%
feasts::gg_tsresiduals()

Um teste de autocorrelação (Ljung Box) retorna um p-valor grande, também indicando que os resíduos são ruído branco:


fabletools::augment(fit) %>%
dplyr::filter(.model == "auto_arima") %>%
fabletools::features(.innov, feasts::ljung_box, lag = 10, dof = 3)

# # A tibble: 1 x 3
# .model lb_stat lb_pvalue
# <chr> <dbl> <dbl>
# 1 auto_arima 8.63 0.281

Também pode ser interessante visualizar o ajuste do modelo. Utilize a função augment() para obter os valores estimados:


fit %>%
fabletools::augment() %>%
dplyr::filter(.model == "auto_arima") %>%
ggplot2::ggplot(ggplot2::aes(x = Year)) +
ggplot2::geom_line(ggplot2::aes(y = Growth, colour = "Observado")) +
ggplot2::geom_line(ggplot2::aes(y = .fitted, colour = "Modelo")) +
ggplot2::scale_colour_manual(
values = c(Observado = "#282f6b", Modelo = "#b22200")
) +
ggplot2::labs(title = "Crescimento anual do PIB do Brasil", colour = NULL)

Previsão

Com o modelo escolhido, previsões podem ser geradas com a função forecast() indicando um horizonte de escolha.


fit %>%
dplyr::select(auto_arima, random_walk) %>%
fabletools::forecast(h = 5) %>%
fabletools::autoplot(pib_br) +
ggplot2::facet_wrap(~.model)

Perceba que os pontos de previsão médios gerados são bastante similares a um processo de passeio aleatório (equivalente a um ARIMA(0,1,0)). O trabalho adicional de especificar termos AR e MA trouxe pouca diferença para os pontos de previsão neste exemplo, apesar de ser perceptível que os intervalos de confiança do modelo auto ARIMA são mais estreitos do que de um passeio aleatório.

Além disso, a previsão fora da amostra gerada ficou bastante aquém dos dados reais para a taxa de crescimento do PIB brasileiro observados no horizonte em questão, configurando apenas um exercício didático.

Saiba mais

Estes são apenas alguns dos recursos e ferramentas disponíveis na família de pacotes do tidyverts. Para uma referência aprofundada, confira o livro Forecasting: Principles and Practice, 3rd Edition, de Hyndman e Athanasopoulos (2021).

Confira outros exercícios aplicados com pacotes do tidyverts:


[1] A função suporta estimação dos modelos com computação paralela usando o pacote future, veja detalhes na documentação e este post para saber mais sobre o tema.

 

Calculando o Value at Risk gaussiano no R

By | mercado financeiro

Uma das medidas de risco mais populares no mundo das finanças está representado no Value at Risk, ou popularmente conhecido como VaR. O VaR mensura a perda em valor monetário de um portfólio em um determinado horizonte de tempo, com base em um intervalo de confiança. Dentre as diversas possibilidades de cálculo do VaR, que depende tanto da forma que se encontram os dados, quanto o objetivo a ser alcançado, iremos ensinar no post de hoje o método do VaR gaussiano.

O VaR gaussiano é uma da formas mais simples que existem para se calcular o risco da perda monetária de um portfólio, assumindo que a distrubuição dos retornos seja normal. Portanto, para calcular o VaR nesse tipo de medida, necessitamos apenas do intervalo de confiança, da média dos retornos e o desvio padrão dos retornos. Seguimos a seguinte equação:

(1)   \begin{equation*}VaR_\alpha = -(\mu - \sigma * Z_\alpha) * I, \end{equation*}

onde \alpha é o nível de significância do VaR, \mu é média dos retornos, \sigma é o desvio padrão, Z_\alpha é o z-score baseado no nível de significância do VaR e I é o atual valor monetário do portfólio.

Vamos então realizar os cálculos do VaR.

library(tidyverse)
library(PerformanceAnalytics)
library(timetk)
library(quantmod)

Primeiro, iremos retirar os dados dos preços e calcular o retorno do portfólio, com base no peso de cada ativo.

# Define os ativos que irão ser coletados

tickers <- c("PETR4.SA", "ITUB4.SA", "ABEV3.SA", "JBSS3.SA")

# Define a data de início da coleta

start <- "2019-12-01"

# Realiza a coleta dos preços diários

prices <- getSymbols(tickers,
                     auto.assign = TRUE,
                     warnings = FALSE,
                     from = start,
                     src = "yahoo") %>% 
  map(~Cl(get(.))) %>% 
  reduce(merge) %>% 
  `colnames<-`(tickers)


# Calcula os retornos mensais

asset_returns <- Return.calculate(prices,
                                  method = "log") %>% 
  na.omit()


# Define os pesos

w <- c(0.50, 0.27, 0.13, 0.10)

# Calcula o retorno do portfolio baseado no peso de cada ativo

portfolio_return <- Return.portfolio(asset_returns,
                                      weights = w) %>% 
  `colnames<-`("port_returns")

# Calcula o retorno do portfolio com 1000 reais investidos

value <- cumprod(1 + portfolio_return) * 1000

Feito isso, podemos calcular o VaR. Devemos definir o valor monetário do nosso portfólio. Considerando que investimos 1000 reais no primeiro dia, sem aportar nenhum outro valor, temos que nosso portfólio até então chegou ao valor de 683,38 reais (podemos dizer que a montagem do portfólio não foi boa).

Em seguida, calculamos nosso VaR com base na média e no desvio padrão do portfólio. Utilizaremos dois níveis de significância para comparação: 1% e 5%.

# Calcula a média dos retornos

port_mean <- mean(portfolio_return)

# Calcula o desvio-padrão dos retornos

port_risk <- sd(portfolio_return)


# Calcula o Var gaussiano com 1% e 5% de significância

var_01 <- -(port_mean + port_risk * qnorm(0.01))

  
var_05 <- -(port_mean + port_risk * qnorm(0.05)) 


# Calcula o valor monetário com base na significância


value_01 <- round(last(value) * var_01)

value_05 <- round(last(value) * var_05)

Por fim, podemos comparar em um gráfico nosso VaR.

# Transforma em tibble

portfolio_return_tbl <- portfolio_return %>% 
  tk_tbl(preserve_index = TRUE,
         rename_index = "date")


# Plota o gráfico de densidade

ggplot(portfolio_return_tbl, aes(x = port_returns))+
  geom_density(color = "darkblue",
               size = .8)+
  geom_vline(xintercept = -var_01,
             linetype = "dotted",
             color = "red",
             size = 1)+
  annotate(geom = "text",
           x = -var_01,
           y = 6,
           label = paste("1% 1 Dia VaR", "R", value_01),
           color = "red",
           angle = 90,
           alpha = .8,
           vjust = -1.75)+
   geom_vline(xintercept = -var_05,
             linetype = "dotted",
             color = "black",
             size = 1)+
  annotate(geom = "text",
           x = -var_05,
           y = 6,
           label = paste("5% 1 Dia VaR", "R", value_05),
           color = "black",
           angle = 90,
           alpha = .8,
           vjust = -1)+
  theme_minimal()+
  labs(title = "Densidade de retornos do Portfólio",
       subtitle = "1% e 5% 1 Dia Gaussian Value at Risk",
       caption = "Dados: Yahoo Finance | Elaboração: analisemacro.com.br",
       x = "",
       y = "")

________________________

(*) Para entender mais sobre Mercado Financeiro e medidas de risco, confira nosso curso de R para o Mercado Financeiro.
________________________

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais
e conteúdos exclusivos sobre Análise de Dados!

Assinar Gratuitamente