xgboost

Econometria, ML ou IA para previsão da PMS?

Prever a Pesquisa Mensal de Serviços (PMS/IBGE) é um desafio por natureza: trata-se de uma série mensal, sujeita a volatilidade e choques que vão de fatores sazonais a mudanças estruturais no setor. Para enfrentar esse problema, realizamos um exercício de comparação entre três abordagens de modelagem: econometria tradicional (ARIMA), machine learning (XGBoost) e inteligência artificial (TimeGPT).

Econometria, ML ou IA para previsão da PMC?

A previsão de indicadores econômicos é uma tarefa crucial para governos, empresas e investidores. No Brasil, a Pesquisa Mensal de Comércio (PMC) do IBGE, que mede a variação percentual do volume de vendas no varejo, é um dos termômetros mais importantes da atividade econômica. Diante da crescente disponibilidade de ferramentas e técnicas, surge a pergunta: qual a melhor abordagem para prever a PMC? A econometria tradicional, o machine learning (ML) ou a inteligência artificial (IA) generativa?

Previsão econômica na era da IA usando Python

Imagine que você tenha uma “simples” tarefa: prever o futuro de uma variável econômica relevante, como a taxa de inflação do país. Existem diversas abordagens para cumprir esta missão, desde o uso de modelos preditivos econométricos, modelos de machine learning ou até mesmo modelos de inteligência artificial (IA). Qual caminho escolher? Qual abordagem é a melhor? Neste artigo tentamos dar uma resposta para estas perguntas, usando como exemplo o IPCA como variável de interesse.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.