Acessando microdados da PNAD Contínua no R

Os microdados da Pesquisa Nacional por Amostra de Domicílios Contínua (PNADC), produzida pelo IBGE, possuem uma riqueza enorme de informação de um conjunto de indicadores relacionados à força de trabalho no país, constituindo um verdadeiro tesouro para economistas e cientistas sociais. Esse grande volume de dados exige, por consequência, o uso de ferramentas adequadas para o tratamento, análise, visualização e sua utilização em geral. Em suma, é necessário utilizar linguagens de programação para "colocar a mão" nesses dados e, neste exercício, mostraremos como fazer isso usando o R.

Para reproduzir o exercício a seguir você precisará dos seguintes pacotes:

1)  Importar microdados trimestrais  

Para começar o exercício, vamos importar os microdados para o environment do R usando o pacote PNADcIBGE - que foi desenvolvido pela própria equipe do IBGE. Os microdados trimestrais serão o alvo do nosso exemplo: apontamos na função get_pnadc o último período (ano/trimestre) disponível da pesquisa e, opcionalmente, as variáveis de interesse1.

2)  Análise de dados

Após este simples comando de importação executado, os microdados da PNADC já estão disponíveis para fazermos uma análise. A função, inclusive, já configura o plano amostral internamente através do argumento design = TRUE - mas o usuário pode desabilitar para obter os dados brutos -, sendo assim podemos usar o pacote survey para obter, por exemplo, o total de homens e mulheres:

Da mesma forma, e com comandos simples, o usuário pode estimar o índice de Gini a nível nacional:

Diversas outras análise podem ser feitas, como esta publicada no blog da Análise Macro:

Saiba mais

Para saber mais e se aprofundar confira o blog da Análise Macro e os cursos aplicados de R e Python, especialmente:

 


[1] Note que os microdados consomem espaço excepcionalmente grande na memória do computador, portanto, evite a importação sem nenhum tipo de filtro de variáveis.

 

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como se comportou o endividamento e a inadimplência nos últimos anos? Uma análise utilizando a linguagem R

Neste exercício realizamos uma análise sobre a inadimplência dos brasileiros no período recente, utilizando a linguagem R para examinar dados públicos do Banco Central e do IBGE. Investigamos a evolução do endividamento, da inadimplência e das concessões de crédito, contextualizando-os com as dinâmicas da política monetária (Taxa Selic) e do mercado de trabalho (renda e desemprego).

Qual o hiato do produto no Brasil?

Entender o hiato do produto é fundamental para avaliar o ritmo da economia e as pressões inflacionárias no Brasil. Neste artigo, mostramos como estimar essa variável não observável a partir dos dados do PIB, explorando diferentes metodologias — de regressões simples a modelos estruturais — e discutindo as limitações e incertezas que cercam cada abordagem.

Determinantes do Preço do Ouro: VAR + Linguagem R

Este artigo realiza uma análise econométrica para investigar os determinantes dinâmicos do preço do ouro. Utilizando um modelo Vetorial Autorregressivo (VAR) em R, examinamos o impacto de variáveis como o dólar (DXY), a curva de juros e a incerteza global. Os resultados mostram que um fortalecimento inesperado do dólar tem um efeito negativo e significativo no curto prazo sobre os retornos do ouro, embora a maior parte de sua variância seja explicada por fatores intrínsecos ao seu próprio mercado.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.