Blog

Blog Análise Macro – Desde 2011, encontrando a verdade nos dados

O dilema de viés e variância em modelos preditivos

Modelos muito simples ou muito complexos podem gerar previsões com alto viés ou alta variância. A grande tarefa de quem trabalha com modelos preditivos é explorar uma especificação de modelo de modo a minimizar o erro de previsão, mas sem cair nestes dois extremos, o que pode ser desafiador. Neste artigo apresentamos estes conceitos e mostramos como analisar ajustes e previsões de modelos de modo a compreender o trade-off entre viés e variância.

Construindo exercícios de Macroeconomia aplicada

A Macroeconomia é um campo de estudo que combina a macroeconomia e a econometria para analisar e modelar as relações entre várias variáveis macroeconômicas usando métodos estatísticos e matemáticos. Em essência, é a aplicação de técnicas econométricas a dados macroeconômicos para obter insights sobre o funcionamento de uma economia como um todo.

Aplicações de Modelos de Volatilidade: otimização de portfólio usando GARCH

Uma aplicação interessante da variância calculada a partir dos modelos da família ARCH é a possibilidade de obter os pesos para um portfólio de mínima variância ao longo do tempo. Veremos neste artigo como obter as medidas para um portfólio de dois ativos e a possibilidade do cálculo por meio do R e do Python.

Cointegração e Vetor de Correção de Erros: Prevendo o desemprego

Neste artigo, mostramos como é possível criar uma previsão do Desemprego medida pela PNADc por meio de um VECM utilizando o R e o Python como ferramentas.

Pré-processamento de dados: lidando com valores extremos e valores ausentes

No contexto de ciência de dados, é comum ter que lidar com problemas nos dados de um modelo preditivo, tais como valores extremos (outliers) ou valores ausentes (missing data). Em muitos casos, é preciso aplicar pré-processamentos para validar e utilizar um modelo, ao mesmo tempo que é necessário evitar o vazamento de dados (data leakage). Abordamos estes desafios neste artigo mostrando exemplos com dados reais em aplicações nas linguagens de programação R e Python.

Aplicações de Modelos de Vol: Beta Dinâmico usando GARCH

O Beta de Mercado é uma medida financeira que representa a sensibilidade ou volatilidade de um ativo em relação ao mercado como um todo. Em outras palavras, o Beta de Mercado mede a resposta esperada de um ativo a movimentos no mercado de referência, geralmente representado por um índice amplo, como o índice geral de ações de um país (por exemplo, o S&P 500 nos EUA e o Ibovespa no Brasil).

Reamostragem em modelos preditivos: separação treino e teste

Nesse artigo abordamos técnicas de reamostragem de dados, conhecidas como separação treino/validação/teste, úteis para avaliar a acurácia de modelos preditivos. Mostramos exemplos e aplicações das técnicas, destacando o contexto e os desafios que podem emergir, usando problemas de regressão e de classificação com dados temporais e de corte transversal. Códigos dos exemplos são expostos nas linguagens de programação R e Python.

Previsão com Vetores Autoregressivos

Neste artigo verificamos como é possível realizar previsão de variáveis macroeconômicas utilizando os Vetores Autoregressivos.

Aplicações de Modelos de Volatilidade: Covariância Dinâmica usando GARCH

Os efeitos GARCH na volatilidade levam a uma variabilidade no tempo dos retornos. Essa variação no tempo tem um impacto direto na relação entre os retornos de dois ativos. Quando sua variância varia com o tempo, também sua covariância muda com o tempo. Portanto, é de interesse modelar essa dinâmica com o objetivo de conhecer a relação de dois ativos no tempo. Vamos realizar esse exercício utilizando o R e o Python como ferramentas.

Análise de Regressão e Previsão

Gerar previsões quantitativas passa por satisfazer os seguintes passos: o quanto nós sabemos sobre os fatores que influenciam determinado evento ou variável? Existem dados disponíveis? O quanto as previsões que estamos fazendo podem afetar os eventos ou observações futuras? Satisfeita essas condições, podemos utilizar uma Regressão Linear para prever os valores de uma variável.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp