Econometria e Machine Learning

Será que o El Niño impacta o preço do feijão com arroz no prato dos brasileiros? Para responder esta pergunta estimamos um modelo VAR(p) utilizando dados do Oceanic Niño Index (ONI) e investigamos a decomposição histórica dos choques estruturais.
Como o surgimento de modelos de inteligência artificial, como os LLMs, estariam as profissões de economistas e cientistas de dados ameaçadas? Neste exercício, tentamos responder esta pergunta ao avaliar o potencial de LLMs em produzir previsões para a inflação no Brasil em diferentes períodos. Comparamos a qualidade das previsões do modelo Google PaLM com as previsões dos profissionais e instituições de mercado, disponibilizadas no relatório Focus do Banco Central.
Em ciência de dados, a interpretação de resultados é fundamental para alcançar os objetivos da modelagem preditiva. Mas como analisar os modelos? Olhar as métricas de erros é suficiente? O melhor modelo é o que tem a maior acurácia? É necessário escolher um modelo? Neste artigo discutimos sobre estas e outras considerações no processo de tomada de decisão de modelos preditivos.
Neste artigo exploramos as técnicas de Bootstrapping, Bagging, Boosting e Random Forests com o objetivo de aumentar o desempenho em modelos preditivos. Percorremos o modo de funcionamento de cada técnica e sua aplicação usando linguagem de programação com dados econômicos do Brasil.
Como saber se o desempenho de um modelo preditivo se generaliza para dados desconhecidos? Dividir a tabela de dados em duas amostras, treinar o modelo e calcular o erro é um processo comum e bastante simples, mas pouco informativo. As técnicas de validação cruzada podem ajudar neste aspecto e neste artigo mostramos como funcionam e como implementar usando linguagem de programação.

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.