Mercado Financeiro

Como usar Principal Component Analysis para analisar ações

Como identificar os fatores significativos que influenciam a variabilidade nos retornos de ações individuais? Como comparar esses fatores ao selecionar empresas de setores distintos? Neste artigo, aplicamos a Análise de Componentes Principais para examinar ações nos setores de tecnologia e bancário, com o objetivo de identificar os fatores estatísticos relevantes.

Volatility Cones

Um dos maiores desafios é determinar se opções são baratas ou caras. Usualmente, realiza-se a transação tomando uma posição na volatilidade do ativo subjacente. Se o mercado espera uma alta na volatilidade, os preços das opções tendem a ser maiores. Se o mercado espera baixa volatilidade, a opção os preços tendem a serem baixos. Mostramos, conforme Burghard e Lane (1990) como se pode usar informações sobre a estrutura de maturidade das volatilidades históricas do ativo subjacente, representadas como cones de volatilidade, para determinar se as opções são baratas ou caras. Usamos a linguagem R como ferramenta para coleta e análise de dados.

Modelos Multifatores usando VAR [R e Python]

Vamos investigar os fatores que representam mudanças inesperadas de variáveis macroeconômicas em retornos de ações. A ideia será denotar a mudança inesperada como o resíduo de variáveis macroeconômicas após a remoção de sua dependência dinâmica por meio do uso de um VAR e utilizar uma regressão linear para modelar a relação com o mercado acionário. Fazemos o uso das variáveis Câmbio real, Embi BR, PIB Mensal, Selic e IPCA. Para verificar a relação, usamos o R e o Python como ferramentas de construção do exercício.

Volatilidade Implícita no R e Python

A volatilidade implícita é uma medida que captura a expectativas dos investidores em relação à variação futura dos preços de um ativo subjacente (opções), como ações, moedas, commodities, entre outros. Veremos como é possível estimar a volatilidade implícita de ações utilizando o R e o Python como ferramentas.

Aplicações de Modelos de Volatilidade: otimização de portfólio usando GARCH

Uma aplicação interessante da variância calculada a partir dos modelos da família ARCH é a possibilidade de obter os pesos para um portfólio de mínima variância ao longo do tempo. Veremos neste artigo como obter as medidas para um portfólio de dois ativos e a possibilidade do cálculo por meio do R e do Python.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.