política monetária

Como analisar o COPOM com IA automatizada?

Os “AI Assistants” são ferramentas que permitem automatizar e agilizar o processo de análise de dados e tomada de decisão. Neste artigo, mostramos como usar IA Generativa para criar um AI Assistant simples que analisa as decisões sobre a política de juros do COPOM.

FED Speeches: Quantificando a Incerteza da Política Monetária com IA e Python

Os discursos dos membros do FED podem dar indicativos relevantes sobre a condução da política monetária, como a percepção de incerteza na fala e na escolha das palavras. Sendo assim, monitorar e interpretar não é suficiente, é necessário quantificar a incerteza nos discursos. Neste exercício mostramos o caminho para construir um indicador de incerteza da política monetária, usando métodos inovadores de IA com o Python.

Mensuração de riscos inflacionários com regressão quantílica no R

O câmbio tem mais impacto sobre a inflação quando a inflação está elevada? Como a inércia inflacionária se comporta em regimes diferentes de inflação? Estas e outras questões macroeconômicas podem ser respondidas com análises de riscos através de regressão quantílica. Neste exercício mostramos o caminho para estimar uma Curva de Phillips Quantílica (CPQ) para o Brasil usando a linguagem R.

Analisando o sentimento da política monetária com IA usando Python

Análise de sentimentos é uma técnica de Processamento de Linguagem Natural (PLN) que serve para revelar o sentimento contido em um texto. Neste exercício, aplicamos esta técnica para analisar as atas das reuniões do COPOM, revelando o que os diretores de política monetária discutem nas entrelinhas. Utilizando um modelo de Inteligência Artificial através do Python, produzimos ao final um índice de 0 a 100 para sintetizar a análise histórica.

Hawkish ou dovish? Analisando o tom da política monetária com IA usando Python

Neste exercício mostramos como utilizar o Google Gemini, um modelo de inteligência artificial, para classificar o tom da política monetária no Brasil em termos simples como “hawkish” ou “dovish”. Em menos de 50 linhas de código de Python, a ata de decisão da taxa de juros é importada e processada, um prompt e um modelo são definidos e a classificação é retornada, de forma automatizada.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.