Cursos da Análise Macro

Crescimento esperado para 2019 é reduzido pela 11ª vez

By 13 de maio de 2019 No Comments

Na seção de política monetária da nova versão do curso de Análise de Conjuntura usando o R, ensino aos alunos a baixar dados do boletim focus do Banco Central através do pacote rbcb. Os dados estão disponíveis por meio da API do Banco Central e também podem ser baixadas via arquivos do tipo json. Com o pacote rbcb, por exemplo, é possível baixar os dados do crescimento esperado para esse ano com o código abaixo.


library(rbcb)
pibe = get_annual_market_expectations('PIB Total',
start_date = '2019-01-04')
pib_esperado = pibe$median[pibe$reference_year=='2019']
pib_esp_min = pibe$min[pibe$reference_year=='2019']
pib_esp_max = pibe$max[pibe$reference_year=='2019']
dates = pibe$date[pibe$reference_year=='2019']

data = data.frame(dates=dates, pib=pib_esperado,
min=pib_esp_min, max=pib_esp_max)

E então gerar um gráfico como abaixo...


library(ggplot2)
library(scales)
library(ggrepel)
library(png)
library(grid)
library(gridExtra)

img <- readPNG('logo.png')
g <- rasterGrob(img, interpolate=TRUE)

ggplot(data=data, aes(x=dates, y=pib))+
geom_line(size=.8, colour='darkblue')+
geom_ribbon(aes(ymax=max,
ymin=min),
fill="blue", alpha=.1)+
labs(title='Crescimento Esperado para 2019',
subtitle='Boletim Focus: mediana das instituições',
caption='Fonte: analisemacro.com.br com dados do BCB.')+
xlab('')+ylab('% a.a.')+
scale_x_date(breaks = date_breaks("7 days"),
labels = date_format("%d/%b"))+
theme(axis.text.x=element_text(angle=45, hjust=1))+
geom_label_repel(label=round(data$pib,2),
color = c(rep('black',1), rep(NA,nrow(data)-1)),
fill = c(rep('#91b8bd',1),
rep(NA,nrow(data)-1)))+
theme(panel.background = element_rect(fill='#acc8d4',
colour='#acc8d4'),
plot.background = element_rect(fill='#8abbd0'),
axis.line = element_line(colour='black',
linetype = 'dashed'),
axis.line.x.bottom = element_line(colour='black'),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
legend.position = 'bottom',
legend.background = element_rect((fill='#acc8d4')),
legend.key = element_rect(fill='#acc8d4',
colour='#acc8d4'),
plot.margin=margin(5,5,15,5))+
annotation_custom(g,
xmin=as.Date('2019-01-03'),
xmax=as.Date('2019-01-31'),
ymin=.4, ymax=1.5)

 

Observe que desenhei os mínimos e máximos esperados via o geom_ribbon do pacote ggplot2. Na versão 3.0 do curso, a propósito, utilizaremos muito o ggplot2 para produção de gráficos. Nesse exemplo, o crescimento esperado na ponta é de 1,45%, ficando no intervalo de 0,73% a 2,64%. É, diga-se, a 11ª semana de cortes nessa expectativa de crescimento...

Para quem tiver interesse, estamos com inscrições abertas para a última turma do ano do curso de Análise de Conjuntura usando o R. Aproveite e garante a sua vaga!

Comments

Cadastre-se na newsletter
e receba nossas novidades em primeira mão!