Blog

Blog Análise Macro – Desde 2011, encontrando a verdade nos dados

O que é e como calcular o Beta de Mercado usando o Python?

Neste tutorial, explicamos o conceito de Beta de Mercado e como calculá-lo por meio de regressão linear utilizando a linguagem de programação Python. Demonstramos como interpretar graficamente e analisar os parâmetros estimados do método estatístico, contextualizando-o na teoria financeira com um exemplo real. Em seguida, aprofundamos a análise, desenvolvendo um Beta com Janelas Deslizantes e aplicando o modelo CAPM. Por fim, utilizamos a regressão linear múltipla para reproduzir o modelo de três fatores de Fama-French, uma extensão do CAPM.

As diferentes formas de avaliar o erro de um modelo de previsão

Existem tantas siglas para métricas de desempenho de modelos preditivos que é fácil se perder na sopa de letrinhas. Neste artigo, fornecemos uma visão geral das principais métricas para avaliar e comparar modelos de regressão e classificação, usando exemplos com dados em Python.

Como construir uma base de dados para gerar previsões para a inflação medida pelo IPCA

Neste exercício, apresentamos as principais fontes de dados públicos utilizadas na macroeconomia e desenvolvemos uma rotina para coletar, tratar e disponibilizar (ETL) as variáveis para uso em modelos preditivos.

Como extrair e apresentar dados de Pedidos de Recuperação Judicial com Python

Os pedidos de RJ podem ser um termômetro para a atividade econômica do país. Usando dados do Serasa e a linguagem Python, podemos avaliar, a nível de setor, se há mais empresas no Brasil em apuros ou não.

Como coletar dados de conjuntura do setor externo com Python

Toda e qualquer economia de mercado deve ter algum contato, menor ou maior, a depender de diversos fatores, com o resto do mundo. Convencionou-se, nesse contexto, a designar como setor externo a área da análise de conjuntura onde são compiladas e analisadas as transações comerciais e financeiras que são feitas entre residentes e não residentes de um determinado país. Neste artigo mostramos rotinas simples para analisar dados de taxa de câmbio e do balanço de pagamentos usando Python.

Criando um Dashboard de Análise de Sentimento de Demonstrativos de Empresas no Python

Os “AI Assistants” são ferramentas que permitem automatizar e agilizar o processo de análise de dados e tomada de decisão. Neste artigo, mostramos como usar IA Generativa para criar um AI Assistant simples que analisa os resultados financeiros de empresas brasileiras usando o Python + Shiny.

Como coletar dados de CNPJ da Receita Federal com Python

Obter dados de empresas, estabelecimentos, CNAES, sócios e muito mais de forma aumatizada é possível com ferramentas como o Python. Neste exercício, mostramos como explorar estes dados da Receita Federal do Brasil.

Como coletar dados para relatórios de câmbio com Python

O monitoramento do mercado cambial permite tomar melhores decisões de consumo e investimento, por sua influência em diversos preços da economia. Neste artigo, mostramos rotinas simples de Python para coleta e análise de dados que são comumente utilizados em relatórios de câmbio.

Sumarizando divulgações trimestrais de empresas usando IA no Python

Neste exercício, iremos utilizar a inteligência artificial no Python para analisar e sumarizar divulgações trimestrais de empresas. Focaremos no uso de ferramentas como Gemini e técnicas de processamento de linguagem natural para extrair informações de documentos PDF relacionados aos relatórios financeiros das empresas.

Prevendo efeitos de mudanças de preços em produtos usando TimeGPT

O exercício explora como prever os efeitos de mudanças nos preços de produtos utilizando o TimeGPT, uma ferramenta de previsão de séries temporais no Python. Usando elasticidade-preço, é possível medir a resposta da demanda a variações de preço. O exemplo prático utiliza dados de vendas de abacates nos EUA.
Análise Macro © 2011 / 2026

comercial@analisemacro.com.br – Rua Visconde de Pirajá, 414, Sala 718
Ipanema, Rio de Janeiro – RJ – CEP: 22410-002