Blog

Blog Análise Macro – Desde 2011, encontrando a verdade nos dados

IPCA de setembro vem em linha com previsão da Análise Macro

O IBGE divulgou recentemente os dados de inflação de setembro/2024. A previsão da Análise Macro era de um aumento do IPCA em 0,39% no mês, com viés altista, enquanto que o indicador mostrou uma variação levemente superior, de 0,44%, puxado por despesas com habitação. Por sua vez, a previsão de mercado era de 0,51% de aumento na inflação, de acordo com o relatório Focus/BCB.

Prevendo Demanda de Energia usando TimeGPT no Python

Neste exemplo mostramos o poder da IA, especificadamente o uso do TimeGPT para prever os valores da Curva de Carga Horária de Energia Elétrica disponibilizada pela ONS. Comparamos o resultado da previsão com um modelo ingênuo e LGBM. Para o exercício, foi usado a linguagem Python para coleta, tratamento e modelagem.

Coletando dados para monitoramento climático com Python

As condições climatológicas influenciam desde a safra de grãos até a decisão de um vendedor ambulante levar seu carrinho para a praia ou não. Por sua importância e impactos na economia do país, neste exercício mostramos como coletar e elaborar análises de dados sobre o clima usando o Python.

Coletando dados de secas e queimadas no Brasil com Python

Neste artigo exploramos fontes públicas de dados sobre secas e queimadas no Brasil. Mostramos como acessar, coletar e preparar os dados para elaboração de análises. Usamos a linguagem Python para desenvolver uma rotina automatizada.

Como analisar demonstrações contábeis usando IA

Neste post, vamos explorar como utilizar o modelo de linguagem Gemini do Google para analisar demonstrações contábeis anuais da Eletrobras e extrair informações relevantes para tomada de decisão. Através de um código Python, vamos importar os dados direto da CVM, conectar com o Gemini e gerar resumos sobre as contas das demonstrações e perspectivas futuras sobre as finanças da empresa.

Como avaliar o retorno econômico de uma política de pública? Um exemplo usando Controle Sintético e a política Mãe-Paranaense

Como podemos traduzir os efeitos de uma política pública para valores monetários? Essa é uma tarefa árdua que requer algumas premissas, entretanto, com métodos bem definidos, é possível obter estimativas dos ganhos e os gastos de uma política pública. Neste exercício, demonstramos tal método usando a política “Mãe Paranense”, um conjunto de ações que visam reduzir a mortalidade materna e infantil no estado. Usamos a linguagem R como ferramenta para importar, tratar, analisar e modelar os dados.

O que é análise de similaridade e como aplicar no Python?

Como usar linguagem de programação e técnicas de mineração de textos para detectar plágio? Neste artigo exploramos as técnicas de análise de similaridade para dados textuais.

O que é e como aplicar análise de sentimentos no Python?

Neste exercício construímos um indicador que busca quantificar o sentimento proveniente das decisões de política monetária no Brasil. Usando técnicas de mineração de texto, implementamos todas as etapas necessárias, desde web scraping e pré-processamento das atas do Comitê de Política Monetária do Banco Central (COPOM), até a criação de tokens e a classificação do sentimento implícito nos textos.

Trimestre de nascimento e o efeito da educação nos rendimentos: como avaliar essa relação usando o R como ferramenta?

Neste exercício, investigamos a influência do trimestre de nascimento como um possível determinante dos rendimentos efetivos no Brasil. Pessoas nascidas em determinados trimestres tendem a acumular mais anos de estudo. Com base em uma observação empírica, utilizamos o trimestre de nascimento como uma variável instrumental para os anos de estudo em um modelo de Regressão Linear com Variáveis Instrumentais (IV). O objetivo é avaliar como essa relação afeta os rendimentos. Usamos a linguagem de programação R para a coleta, tratamento e análise de dados.

Avaliando os Ciclos da Taxa de Desocupação Brasileira usando Python

Neste exercício, implementamos Modelos de Componentes Não Observados (MCNO) em Python para analisar a Taxa de Desocupação Brasileira. Comparamos os componentes extraídos pelo MCNO com os obtidos pelo Filtro de Hodrick-Prescott (HP), uma técnica comum para decomposição de séries temporais.
Análise Macro © 2011 / 2026

comercial@analisemacro.com.br – Rua Visconde de Pirajá, 414, Sala 718
Ipanema, Rio de Janeiro – RJ – CEP: 22410-002