Blog

Blog Análise Macro – Desde 2011, encontrando a verdade nos dados

Interpretabilidade em Modelos de Machine Learning no Python

Como explicar modelos de previsão de séries  temporais econômicas utilizando métodos de Machine Learning? Neste exercício, demonstraremos alguns métodos úteis para avaliar os parâmetros dos preditores em tais modelos. Para isso, utilizaremos o framework da biblioteca Skforecast em Python.

Previsão do desemprego do EUA utilizando skforecast no Python

Neste exercício, exploramos como o framework da biblioteca `skforecast` do Python pode ser extremamente útil para a previsão de séries temporais econômicas, utilizando como exemplo as variações no desemprego dos EUA ao longo de um horizonte de 1 ano.

Volatilidade do Ibovespa: GARCH vs. ML

Uma importante medida em finanças é o risco associado a um ativo, e a volatilidade é talvez a medida de risco mais amplamente utilizada. Dentre as várias técnicas disponíveis para estimar a volatilidade, as técnicas de Aprendizado de Máquina têm se mostrado bastante eficazes em comparação com os métodos convencionais. Neste contexto, analisamos a previsão da volatilidade do Ibovespa utilizando métodos GARCH, SVR (Support Vector Regression) e Redes Neurais, com o Python como ferramenta de análise.

Criando estratégias de investimento com IA no Python

Imagine ter a capacidade de pedir à inteligência artificial para criar uma estratégia de investimento baseada em indicadores técnicos ou regras específicas. Com o tempo sendo um recurso valioso, nem sempre é possível desenvolver um código por conta própria. Vamos mostrar como a IA, junto com Python, pode facilitar a criação de estratégias de investimento.

Análise de Tendência de Mercado com IA usando Python

Você está analisando o mercado acionário e se concentrando nos preços de uma ação específica. Ao longo dos dias, percebe uma mudança na trajetória dos preços e deseja entender o que está acontecendo por meio de notícias. Como automatizar esse processo de forma eficiente usando IA? Neste exercício, mostramos como utilizar o Python para essa tarefa.

Análise de Sentimento de Mercado com IA usando Python

Ler notícias diárias sobre empresas e ações listadas na bolsa pode ser maçante e cansativo. Mas, e se houvesse uma maneira de simplificar todo esse processo? Mostraremos como a IA generativa pode ajudar a captar o sentimento de notícias sobre companhias, automatizando todo o processo com Python e Gemini.

Analisando o mercado acionário brasileiro com aprendizado não supervisionado no Python

Como identificar os fatores significativos que influenciam a variabilidade nos retornos de ações individuais? Como comparar esses fatores ao selecionar empresas de setores distintos? Neste artigo, aplicamos a Análise de Componentes Principais para examinar ações que compõem o índice bovespa, com o objetivo de identificar os fatores estatísticos relevantes. Usamos o Python como ferramenta para aplicar a análise.

Analisando Ações do Mercado Acionário Brasileiro usando IA

Um analista de ações possui total conhecimento de como explorar dados financeiros, mas nem sempre há disposição para relembrar códigos de análises já bem conhecidas. Se temos os dados, porque não pedir para a IA criar o resultado do que temos em mente? Neste exercício, mostramos o poder da IA Generativa para criar análises de ações usando Python.

Otimizando tarefas com técnicas de Engenharia de Prompt aplicadas em IA generativa

Convidamos um Economista, um Cientista de Dados e um Estatístico para uma competição de previsão. A cada mês, por um ano, eles deveriam compartilhar suas previsões e suas estratégias entre si, viabilizando calibragens. Neste artigo mostramos como foi o desempenho de cada um e o que isso tudo tem a ver com IA e Engenharia de Prompt.

FED Speeches: Quantificando a Incerteza da Política Monetária com IA e Python

Os discursos dos membros do FED podem dar indicativos relevantes sobre a condução da política monetária, como a percepção de incerteza na fala e na escolha das palavras. Sendo assim, monitorar e interpretar não é suficiente, é necessário quantificar a incerteza nos discursos. Neste exercício mostramos o caminho para construir um indicador de incerteza da política monetária, usando métodos inovadores de IA com o Python.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp