Blog

Blog Análise Macro – Desde 2011, encontrando a verdade nos dados

Como analisar demonstrações contábeis usando IA

Neste post, vamos explorar como utilizar o modelo de linguagem Gemini do Google para analisar demonstrações contábeis anuais da Eletrobras e extrair informações relevantes para tomada de decisão. Através de um código Python, vamos importar os dados direto da CVM, conectar com o Gemini e gerar resumos sobre as contas das demonstrações e perspectivas futuras sobre as finanças da empresa.

Como avaliar o retorno econômico de uma política de pública? Um exemplo usando Controle Sintético e a política Mãe-Paranaense

Como podemos traduzir os efeitos de uma política pública para valores monetários? Essa é uma tarefa árdua que requer algumas premissas, entretanto, com métodos bem definidos, é possível obter estimativas dos ganhos e os gastos de uma política pública. Neste exercício, demonstramos tal método usando a política “Mãe Paranense”, um conjunto de ações que visam reduzir a mortalidade materna e infantil no estado. Usamos a linguagem R como ferramenta para importar, tratar, analisar e modelar os dados.

O que é análise de similaridade e como aplicar no Python?

Como usar linguagem de programação e técnicas de mineração de textos para detectar plágio? Neste artigo exploramos as técnicas de análise de similaridade para dados textuais.

O que é e como aplicar análise de sentimentos no Python?

Neste exercício construímos um indicador que busca quantificar o sentimento proveniente das decisões de política monetária no Brasil. Usando técnicas de mineração de texto, implementamos todas as etapas necessárias, desde web scraping e pré-processamento das atas do Comitê de Política Monetária do Banco Central (COPOM), até a criação de tokens e a classificação do sentimento implícito nos textos.

Trimestre de nascimento e o efeito da educação nos rendimentos: como avaliar essa relação usando o R como ferramenta?

Neste exercício, investigamos a influência do trimestre de nascimento como um possível determinante dos rendimentos efetivos no Brasil. Pessoas nascidas em determinados trimestres tendem a acumular mais anos de estudo. Com base em uma observação empírica, utilizamos o trimestre de nascimento como uma variável instrumental para os anos de estudo em um modelo de Regressão Linear com Variáveis Instrumentais (IV). O objetivo é avaliar como essa relação afeta os rendimentos. Usamos a linguagem de programação R para a coleta, tratamento e análise de dados.

Avaliando os Ciclos da Taxa de Desocupação Brasileira usando Python

Neste exercício, implementamos Modelos de Componentes Não Observados (MCNO) em Python para analisar a Taxa de Desocupação Brasileira. Comparamos os componentes extraídos pelo MCNO com os obtidos pelo Filtro de Hodrick-Prescott (HP), uma técnica comum para decomposição de séries temporais.

Técnicas de machine learning para mineração de textos

Neste artigo apresentamos o modelo Naive Bayes para problemas de classificação binária de textos. Mostramos a intuição do modelo e sua formulação matemática, além de pontuar as principais aplicações e casos de uso. Ao final, demonstramos um exemplo aplicado à classificação de spam em comentários do YouTube, usando a linguagem de programação Python.

Técnicas de extração de informação com text mining

Como quantificar sobre o que se trata um texto? Que tipo de informação podemos obter a partir destes dados? Como identificar a relevância das palavras? Neste artigo exploramos técnicas estatísticas de frequência de tokens para extrair informação de dados textuais.

Avaliando o impacto do aumento do bolsa família nas despesas orçamentárias totais usando Propensity Score

Neste exercício, usamos a linguagem de programação R para avaliar o impacto do programa Bolsa Família sobre as despesas totais da famílias brasileiras, tomando como referência dados da POF 2017-2018, usando o método de Propensity Score Matching.

Usando Python para compreender os Regimes da Volatilidade do Mercado Acionário Brasileiro

Neste exercício, vamos explorar os regimes de volatilidade do mercado acionário brasileiro utilizando o Ibovespa como proxy no Python. Para isso, vamos utilizar a biblioteca yfinance para baixar os dados históricos do índice e a biblioteca statsmodels para ajustar um modelo de regressão dinâmica com mudança de regime (Markov switching).

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp