Tag

previsão do desemprego Archives - Análise Macro

Google Trends e previsão do desemprego no Brasil

By | Comentário de Conjuntura

A pandemia do coronavírus impôs diversos desafios para a humanidade, nos mais diferentes campos. Em termos de previsão de variáveis macroeconômicas, não é diferente. O ajuste dos modelos tem sido um desafio para economistas e analistas de mercado, que possuem a árdua e ingrata tarefa de antecipar eventos futuros. Pensando nisso, nesse Comentário de Conjuntura buscamos implementar um modelo de previsão para a taxa de desemprego medida pela PNAD Contínua que utiliza termos de busca do Google Trends.

A base de dados do Google Trends é hoje em dia bastante conhecida por especialistas que se dedicam à tarefa de forecasting, tendo um amplo conjunto de artigos e papers que fazem uso da mesma para esse fim. D´Amuri e Marcucci, 2017, por exemplo, fazem uso dessa base para construir um modelo de previsão para o desemprego nos Estados Unidos. Os resultados encontrados sugerem que essa base de dados é um bom preditor para a taxa de desemprego norte-americana.

Tendo o mesmo objetivo que os autores, nós revisamos um modelo de cointegração para o desemprego que inclui os termos de busca empregos seguro desemprego, que são ilustrados acima. A inclusão do termo seguro desemprego procura "tratar" o efeito pandemia, que causou um forte choque sobre a taxa de desemprego medida pela PNAD Contínua, como pode ser visto abaixo.

Além dos termos de busca do GT, também adicionamos mais algumas co-variáveis ao modelo, listadas a seguir.

O modelo é implementado, então, no R, com o auxílio da biblioteca vars e uso da metodologia de Johansen. A seguir, um gráfico que apresenta a previsão fora da amostra considerada.

Os códigos que implementam o exercício estão disponíveis para os membros do Clube AM.

 

Usando um VECM para projetar o Desemprego no Brasil

By | Macroeconometria

A semana termina aqui na Análise Macro com mais uma edição do Clube do Código. Estará disponível no próximo domingo a Edição 68 do Clube, titulada Usando um VECM para projetar o Desemprego no Brasil. Ao longo da semana, os leitores desse espaço acompanharam tanto no Comentário de Conjuntura quanto na divulgação de indicadores feita hoje, uma preocupação com a projeção da taxa de desemprego. Na mais nova edição do Clube, detalhamos mais um modelo de previsão para a taxa de desemprego, utilizando um Vetor de Correção de Erros. O novo modelo de previsão para a taxa de desemprego utiliza pesquisas do Google, seguindo o paper "The predictive power of google search in forecasting US unemployment".

Acima temos um gráfico com as projeções da taxa de desemprego nos próximos seis meses. Abaixo, uma tabela com as previsões geradas pelo modelo.

Previsões para a Taxa de Desemprego
Lower Média Upper
Nov/19 11.2 11.4 11.5
Dez/19 11.0 11.2 11.4
Jan/20 11.1 11.4 11.8
Fev/20 11.3 11.8 12.3
Mar/20 11.5 12.1 12.8
Abr/20 11.1 11.9 12.7

O modelo utiliza as seguintes variáveis: (i) índice coincidente de desemprego da FGV; (ii) índice antecedente de emprego da FGV; (iii) índice de incerteza econômica da FGV; (iv) pesquisas no Google pela palavra 'emprego'; (v) IBC-BR; (vi) taxa de juros Selic.

Na Edição 68 do Clube do Código estão detalhados todos os códigos utilizados no exercício.

_________________________

Quer aprender a construir modelos de séries temporais? Veja nosso Curso de Séries Temporais usando o R.

Desemprego seguirá elevado nos próximos meses

By | Comentário de Conjuntura

Ao longo de 2019, conforme previsão feita nesse espaço, a taxa de desemprego se manteve em patamar ainda elevado. Ao reestimar nossos modelos de previsão com dados mais recentes, conforme documentado na edição 53 do Clube do Código, obtemos resultados ainda bastante críticos. De fato, o desemprego deve permanecer ainda elevado nos próximos meses, se consolidando no principal problema macroeconômico do país.

Previsões para a Taxa de Desemprego
SARIMA Kalman BVAR Combinada
2019 Oct 11.7 11.6 11.7 11.6
2019 Nov 11.7 11.4 11.7 11.5
2019 Dec 11.7 11.3 11.6 11.4
2020 Jan 12.3 11.7 11.6 11.6
2020 Feb 12.9 12.1 11.5 11.9
2020 Mar 13.4 12.5 11.4 12.2

A tabela  acima resume as previsões geradas pela combinação de três modelos por meio do Erro Quadrático Médio (EQM) dos mesmos. Isto é, um modelo com maior EQM tem menor peso na combinação. Essa previsão pode ser expressa no gráfico abaixo.

A seguir, nós controlamos pela sazonalidade da série, dando uma visão melhor do comportamento da taxa de desemprego nos próximos meses.

A previsão é que o desemprego, já feito o ajuste sazonal, chegue a março do próximo ano em 11,6% da PEA, um valor ainda bastante elevado. Para além desses três modelos, também estimei um modelo com outro conjunto de variáveis explicativas, a saber: (i) índice coincidente de desemprego da FGV; (ii) índice antecedente de emprego da FGV; (iii) índice de incerteza econômica da FGV; (iv) pesquisas no Google pela palavra 'emprego'; (v) IBC-BR; (vi) taxa de juros Selic.

Com base em cenários estatísticos para essas variáveis, o desemprego se comportará conforme a tabela abaixo, com intervalo de confiança de 40%:

Previsões para a Taxa de Desemprego
Lower Média Upper
Out/19 11.0 11.3 11.6
Nov/19 11.0 11.3 11.6
Dez/19 11.1 11.4 11.7
Jan/20 11.1 11.5 11.8
Fev/20 11.2 11.5 11.8
Mar/20 11.2 11.5 11.8

A seguir, colocamos um gráfico com essas projeções a partir do modelo alternativo com variáveis exógenas:

Os resultados, ao considerarmos um conjunto mais amplo de variáveis explicativas para a taxa de desemprego, são um pouco melhores do que a previsão combinada. Contudo, o nível do desemprego ainda permanece oscilando no intervalo entre 11% e 11,8%, o que leva a população desocupada a flutuar entre 11,6 e 12,5 milhões de pessoas. Um número ainda bastante elevado.

_______________

(*) Para aprender a fazer previsão combinada, conheça nosso Curso de Construção de Cenários e Previsões usando o R.

Avaliando a acurácia de uma previsão com o R

By | Hackeando o R

Quem trabalha com previsões quantitativas sabe que uma parte importante de qualquer projeto é a avaliação das previsões geradas pelo(s) modelo(s). É dessa forma que podemos verificar se estamos no caminho correto. Para ilustrar como isso pode ser feito no R, vou construir nesse post um modelo univariado simples para a taxa de desemprego medida pela PNAD Contínua e depois efetuar o processo de avaliação das previsões geradas. Para começar, vamos carregar alguns pacotes...


library(forecast)
library(ggplot2)
library(sidrar)
library(xtable)

Vamos pegar os dados que precisamos do SIDRA com o pacote sidrar...


# Dados Brutos
table = get_sidra(api='/t/6318/n1/all/v/1641/p/all/c629/all')
# Pegar a PEA
pea = table$Valor[table$`Condição em relação à força de trabalho e condição de ocupação (Código)`==32386]
# Pegar a População Desocupada
desocupada = table$Valor[table$`Condição em relação à força de trabalho e condição de ocupação (Código)`==32446]
# Criar Desemprego
desemprego = ts(desocupada/pea*100, start=c(2012,03), freq=12)

Com a função ggtsdisplay do pacote forecast podemos visualizar a nossa série e as funções de autocorrelação como abaixo.

Para a construção de um modelo univariado, teríamos que (1) verificar se a nossa série é estacionária e (2) tentar identificar os coeficientes AR e MA através de funções de autocorrelação. Vamos aqui, entretanto, utilizar um algoritmo de modo a automatizar esse processo através de critérios de informação com a função auto.arima:


sarima = auto.arima(desemprego, max.p=2, max.q=4, max.P = 2, max.Q=2)

Aplicada a função auto.arima sobre a nossa série, temos um modelo SARIMA(1,2,0)(1,1,0)[12]. Com base nesse modelo, podemos agora gerar previsões e, consequentemente, avaliá-las. É comum aqui, por suposto, dividir a nossa amostra em duas subamostras: uma de treino, onde rodamos o nosso modelo e outra de teste, onde são feitas as previsões. Nessa amostra de teste é onde ocorre a comparação com as observações efetivas da nossa série. Como regra de bolso, é comum destinar 70% para a subamostra de treino e o restante para a amostra de teste. Como nossa amostra é, entretanto, curta, vou aqui reservar apenas as 6 últimas observações para o conjunto de teste, de modo a ilustrar apenas o código.


training = window(desemprego, end=end(desemprego)-c(0,6))
test = window(desemprego, start=end(desemprego)-c(0,5))
acuracia = Arima(training, order=c(1,2,0), seasonal = c(1,1,0))
acuraciaf = forecast(acuracia, h=length(test), level=95)

Com o código acima, criamos as nossas subamostras, rodamos o modelo na subamostra de treino e gerar a previsão com base no tamanho do vetor de teste. Por fim, com a função accuracy do pacote forecast podemos avaliar essas previsões.


acc = accuracy(acuraciaf$mean, test)

E aí está a tabelinha que queríamos...

ME RMSE MAE MPE MAPE ACF1 Theil's U
Test set -0.19 0.23 0.20 -1.51 1.57 0.37 0.87

O erro médio do nosso modelinho é de 0,19 negativos e o RMSE é de 0,23. Para maiores detalhes sobre essas métricas, veja esse post aqui.

Curtiu o tema? Nós exploramos isso e muito mais no nosso Curso de Construção de Cenários e Previsões usando o R, voltado exclusivamente para a construção de previsões quantitativas no R. Dê uma olhada lá e se inscreva na próxima turma!

Desemprego deve permanecer estável ao longo do ano

By | Mercado de Trabalho

O IBGE divulgou na última terça-feira os resultados da PNAD Contínua para o trimestre móvel encerrado em março. Como comentei no comentário de conjuntura dessa semana, as notícias não foram boas. A taxa de desemprego ficou em 12,7%, enquanto a taxa dessazonalizada ficou em 12%, apenas 0,1 p.p. abaixo de fevereiro. De modo a gerar uma projeção para os próximos seis meses, a propósito, eu atualizei os modelos apresentados na edição 53 do Clube do Código, de modo a gerar uma previsão combinada para a taxa de desemprego.

 

Previsões para a Taxa de Desemprego
SARIMA Kalman BVAR Combinada
2019 Apr 12.3 12.6 12.7 12.6
2019 May 11.8 12.5 12.6 12.5
2019 Jun 11.3 12.3 12.5 12.3
2019 Jul 10.9 12.3 12.4 12.3
2019 Aug 10.5 12.2 12.3 12.2
2019 Sep 10.0 12.0 12.2 12.0

A tabela acima resume as previsões geradas pelos três modelos que rodei, bem como a previsão combinada entre eles, com maior peso para o Filtro de Kalman. A taxa de desemprego deve cair dos atuais 12,7% para algo próximo a 12% em setembro. Em termos dessazonalizados, entretanto, a taxa de desemprego deve se manter estável ao longo do período projetado, se mantendo próxima a 12,1%. O gráfico abaixo ilustra.

Caso essas projeções se confirmem, não deixa de ser um banho de água fria...

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais
e conteúdos exclusivos sobre Análise de Dados!

Assinar Gratuitamente