Blog

Blog Análise Macro – Desde 2011, encontrando a verdade nos dados

Usando IA para prever o consumo de energia no Brasil com Python

Neste exemplo mostramos o poder da IA, especificadamente o uso de modelos de Machine Learning de Séries Temporais, para prever os valores da Curva de Carga Horária de Energia Elétrica do Sudeste disponibilizada pela ONS. Para realizar as previsões, além dos modelos, empregamos métodos de machine learning já conhecidos, como cross-validation, usando a biblioteca MlForecast do Python.

Controle Sintético: Lei Anti Fumo na Califórnia

O que é Controle Sintético e como podemos utilizar essa ferramenta para auxiliar no estudo da avaliação de impacto? Neste post, oferecemos uma breve introdução a esse importante método da área de inferência causal, acompanhado de um estudo de caso para uma compreensão mais aprofundada de sua aplicação. Os resultados foram obtidos por meio da implementação em Python, como parte integrante do nosso curso sobre Avaliação de Políticas Públicas utilizando esta linguagem de programação.

Previsão de crises financeiras com IA usando Python

Fazer investimentos sem analisar dados é como atirar no escuro. Ninguém quer estar numa posição errada na hora que uma nova crise estourar. Para mitigar estes riscos, modelos de probabilidade de recessão podem trazer informações relevantes para a tomada de decisão. Neste artigo mostramos uma aplicação destes modelos para a economia norte-americana, usando o ferramental de pacotes do Python.

Previsão econômica na era da IA usando Python

Imagine que você tenha uma “simples” tarefa: prever o futuro de uma variável econômica relevante, como a taxa de inflação do país. Existem diversas abordagens para cumprir esta missão, desde o uso de modelos preditivos econométricos, modelos de machine learning ou até mesmo modelos de inteligência artificial (IA). Qual caminho escolher? Qual abordagem é a melhor? Neste artigo tentamos dar uma resposta para estas perguntas, usando como exemplo o IPCA como variável de interesse.

Apreçamento de Opções via IA

O aprendizado de máquina (ML) é visto como parte da inteligência artificial. Algoritmos de ML constroem um modelo com base em dados de treinamento para fazer previsões ou decisões sem serem explicitamente programados para fazê-lo. Neste exercício, usamos o Python para aplicar modelos de ML conhecidos como random forests e neural networks a uma aplicação simples na precificação de opções: o treinamento dos modelos para aprender a precificar opções de compra sem conhecimento prévio dos fundamentos teóricos da famosa equação de precificação de opções de Black e Scholes (1973).

TimeGPT e a previsão automática usando IA no Python

Historicamente, métodos estatísticos como ARIMA, ETS, MSTL, Theta e CES têm sido confiavelmente empregados em diversos domínios. Na última década, modelos de aprendizado de máquina como XGBoost e LightGBM ganharam popularidade. Agora, podemos entrar em uma nova fase na era da previsão: o uso da IA Generativa para a previsão de séries temporais. Neste exercício, demonstramos de forma introdutória o TimeGPT e criamos um exemplo usando o IPCA.

Estudo de Caso: Impacto na redução do ICMS

Como podemos avaliar o efeito de uma intervenção política ao longo do tempo? O método diferenças-em-diferenças surge como uma poderosa ferramenta para realizar essa análise em dados observacionais. Neste exercício, exploramos como aplicar esse método para avaliar o impacto da redução do ICMS usando Python. Através deste exemplo simples, demonstraremos como investigar o efeito causal de uma intervenção ao longo do tempo e visualizar seus resultados de forma clara.

A aplicação de IA em análise de dados econômicos usando Python

Neste artigo mostramos 3 ferramentas que podem ajudar analistas a resolver tarefas do dia a dia de forma mais rápida, agregando inteligência articial na análise de dados. Seja para completar código ou para análises de dados descritivas e preditivas avançadas, estas ferramentas são simples de usar e se integram com o Python.

Introdução a Prompt Engineering para Inteligência Artificial

“Um especialista sabe todas as respostas, se você fizer as perguntas certas”. Este é o mesmo princípio usado nas técnicas de Prompt Engineering, com objetivo de otimizar as respostas de aplicações de IA generativa. Neste artigo apresentamos algumas destas técnicas com exemplos práticos em Python.

Previsão de retornos de ações com IA usando Python

Neste exercício, nosso objetivo é utilizar fatores de investimento como preditores para o retorno de uma ação, combinando-os com o uso da Regressão de Lasso para ajustar uma série de fatores de risco no Python. Este método nos permite explorar como diferentes variáveis influenciam os retornos das ações e como a Regressão de Lasso pode nos ajudar a selecionar os fatores mais relevantes, contribuindo para uma análise mais precisa. Todo o exercício é construído usando o Python como ferramenta.
Análise Macro © 2011 / 2026

comercial@analisemacro.com.br – Rua Visconde de Pirajá, 414, Sala 718
Ipanema, Rio de Janeiro – RJ – CEP: 22410-002