Blog

Blog Análise Macro – Desde 2011, encontrando a verdade nos dados

Estimando a Inércia Inflacionária usando o Python

Como que a inflação passada pode afetar a inflação presente? É possível mensurar esse efeito, isto é, o grau de persistência da inflação, por meio de um processo autorregressivo de ordem 1. Mostramos como construí-la utilizando o Python como ferramenta de coleta de dados, análise e ajuste do modelo.

Volatility Cones

Um dos maiores desafios é determinar se opções são baratas ou caras. Usualmente, realiza-se a transação tomando uma posição na volatilidade do ativo subjacente. Se o mercado espera uma alta na volatilidade, os preços das opções tendem a ser maiores. Se o mercado espera baixa volatilidade, a opção os preços tendem a serem baixos. Mostramos, conforme Burghard e Lane (1990) como se pode usar informações sobre a estrutura de maturidade das volatilidades históricas do ativo subjacente, representadas como cones de volatilidade, para determinar se as opções são baratas ou caras. Usamos a linguagem R como ferramenta para coleta e análise de dados.

Modelos de Machine Learning aplicados à Macroeconomia

O termo “Machine Learning” foi cunhado por Arthur Samuel em 1959 e definido como a capacidade que proporciona aos computadores a habilidade de aprender sem requerer programação explícita. Ao longo do tempo, essa área tem evoluído em paralelo com os avanços computacionais, consolidando-se como um elemento crucial na construção de modelos preditivos. Com a profusão de dados, particularmente os de natureza econômica, tornou-se possível a elaboração de modelos de previsão para variáveis macroeconômicas. Este artigo oferece uma introdução a esses tipos de modelos e apresenta um exemplo concreto: a construção de uma previsão para a probabilidade de recessão nos EUA, utilizando as linguagens R e Python.

Previsão econômica com métodos de Suavização Exponencial

Neste texto abordamos métodos de suavização exponencial simples, com tendência e com sazonalidade para finalidade de previsão de séries temporais. Mostramos as diferenças de cada método com exemplos de dados econômicos do Brasil, em aplicações nas linguagens de programação R e Python.

Construindo um modelo para a inflação de alimentos

A inflação de alimentos tem sido uma grande incógnita nos últimos anos, influenciando de forma decisiva o erro de previsão da inflação cheia. Isso nos motivou a replicar um modelo do Banco Central do Brasil, exposto em boxe do Relatório de Inflação de junho de 2016, intitulado Evolução recente da inflação de alimentos. Replicamos o exercício utilizando a linguagem R e Python.

Modelos Multifatores usando VAR [R e Python]

Vamos investigar os fatores que representam mudanças inesperadas de variáveis macroeconômicas em retornos de ações. A ideia será denotar a mudança inesperada como o resíduo de variáveis macroeconômicas após a remoção de sua dependência dinâmica por meio do uso de um VAR e utilizar uma regressão linear para modelar a relação com o mercado acionário. Fazemos o uso das variáveis Câmbio real, Embi BR, PIB Mensal, Selic e IPCA. Para verificar a relação, usamos o R e o Python como ferramentas de construção do exercício.

Combinando Previsões

Uma maneira simples de melhorar a precisão das previsões é utilizar vários métodos diferentes na mesma série temporal e calcular a média das previsões resultantes. Vamos verificar como combinar previsões criados no R e Python utilizando variáveis macroeconômicas como exemplo.

Regressão linear: teoria e prática

Como estimar uma regressão linear sem linguagem de programação? Nesse texto introduzimos esse modelo fundamental de ciência de dados, abrindo as fórmulas e ajustando uma regressão “na mão”, para que o código pronto não seja uma caixa preta. Usamos como exemplo o problema da precificação de imóveis, com aplicações em R e Python.

Meta de Inflação e Expectativas dos Agentes

Vamos investigar a atratividade da meta de inflação em relação às expectativas dos agentes privados no Brasil. Em outras palavras, verificaremos se a meta de inflação definida pelo Conselho Monetário Nacional (CMN) tem sido uma variável importante para explicar o comportamento das expectativas de inflação dos agentes econômicos. Para isso, nos basearemos em Carvalho e Minella (2012) e Bevilaqua, Mesquita e Minella (2008) para construir um modelo explicativo para as expectativas de inflação. A estimação será feita via Mínimos Quadrados Ordinários e Mínimos Quadrados em 2 Estágios (TSLS) com instrumentos. Faremos o uso do Python para realizar a coleta e tratamento dos dados, bem como o ajuste do modelo.

Volatilidade Implícita no R e Python

A volatilidade implícita é uma medida que captura a expectativas dos investidores em relação à variação futura dos preços de um ativo subjacente (opções), como ações, moedas, commodities, entre outros. Veremos como é possível estimar a volatilidade implícita de ações utilizando o R e o Python como ferramentas.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp