Categoria: Data Science

Coletando dados do Google Trends no R e no Python

Como acompanhar e antecipar tendências de mercado? Independentemente da resposta final, os dados são o meio. Neste artigo, mostramos como obter dados do Google Trends em tempo quase real, utilizando as linguagens de programação R e Python.

Modelo de previsão para grupos do IPCA

Neste artigo investigamos se a previsão desagregada da inflação é capaz de gerar previsões mais acuradas do que a previsão agregada. Utilizamos o Índice Nacional de Preços ao Consumidor Amplo (IPCA) como medida de interesse, aplicando um modelo simples e um modelo de passeio aleatório para comparação. Todo o processo pode ser feito de maneira automatizada utilizando a linguagem de programação R.

Text mining dos comunicados do FOMC: prevendo mudanças na política

Como quantificar sentimentos e emoções a partir de comunicados de política monetária? Neste exercício utilizamos os statements do FOMC para construir um índice de sentimentos, o que permite comparar a “narrativa” com a prática da política monetária, ou seja, mudanças da taxa de juros. Também avaliamos se tal índice é útil em prever mudanças de política através do teste de causalidade de Granger.

Analisando a inflação por faixa de renda no Python

Neste artigo mostramos como coletar dados de inflação segmentados por faixa de renda e como calcular a variação acumulada em 12 meses usando a linguagem de programação Python.

Previsão do CPI usando text mining nos comunicados do FOMC

Se textos pudessem falar, o que eles diriam? O uso de dados textuais é capaz de melhorar um modelo de previsão? Neste exercício exploramos o uso de fatores textuais extraídos dos comunicados do FOMC para a previsão da inflação norte-americana.
Análise Macro © 2011 / 2026

comercial@analisemacro.com.br – Rua Visconde de Pirajá, 414, Sala 718
Ipanema, Rio de Janeiro – RJ – CEP: 22410-002

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp