Blog

Blog Análise Macro – Desde 2011, encontrando a verdade nos dados

Bagging, Random Forests e Boosting

Nesse artigo, vamos ilustrar os métodos Bagging, Random Forests e Boosting usando árvores de decisão como blocos de construção para construir modelos de previsão mais poderosos.

Estimando o juro neutro para o Brasil

A taxa de juros real neutra da economia é um elemento crucial na formulação da política monetária. No entanto, o uso da taxa de juros neutra na condução da política monetária enfrenta uma dificuldade inerente, pois se trata de uma variável não observável. Neste artigo, mostramos como criar estimativas para a Taxa de Juro Real Neutra de acordo com literaturas subjacentes utilizando o Python como ferramenta.

Como usar Principal Component Analysis para analisar ações

Como identificar os fatores significativos que influenciam a variabilidade nos retornos de ações individuais? Como comparar esses fatores ao selecionar empresas de setores distintos? Neste artigo, aplicamos a Análise de Componentes Principais para examinar ações nos setores de tecnologia e bancário, com o objetivo de identificar os fatores estatísticos relevantes.

Métodos de Reamostragem

Métodos de reamostragem são ferramentas indispensáveis na estatística moderna. Eles envolvem, basicamente, extrair de forma repetida amostras de um conjunto de treino de modo a reestimar o modelo de interesse em cada uma das amostras, obtendo assim informação adicional sobre o modelo ajustado. Vamos conhecer dois métodos úteis aplicáveis a dados de séries temporais de forma a auxiliar previsões: cross-validation e bootstrap.

Previsão econômica com modelos ARIMA

Neste texto abordamos modelos da família ARIMA para finalidade de previsão de séries temporais. Mostramos as diferenças de cada modelo com exemplos de dados econômicos do Brasil, em aplicações nas linguagens de programação R e Python.

Estimando a Inércia Inflacionária usando o Python

Como que a inflação passada pode afetar a inflação presente? É possível mensurar esse efeito, isto é, o grau de persistência da inflação, por meio de um processo autorregressivo de ordem 1. Mostramos como construí-la utilizando o Python como ferramenta de coleta de dados, análise e ajuste do modelo.

Volatility Cones

Um dos maiores desafios é determinar se opções são baratas ou caras. Usualmente, realiza-se a transação tomando uma posição na volatilidade do ativo subjacente. Se o mercado espera uma alta na volatilidade, os preços das opções tendem a ser maiores. Se o mercado espera baixa volatilidade, a opção os preços tendem a serem baixos. Mostramos, conforme Burghard e Lane (1990) como se pode usar informações sobre a estrutura de maturidade das volatilidades históricas do ativo subjacente, representadas como cones de volatilidade, para determinar se as opções são baratas ou caras. Usamos a linguagem R como ferramenta para coleta e análise de dados.

Modelos de Machine Learning aplicados à Macroeconomia

O termo “Machine Learning” foi cunhado por Arthur Samuel em 1959 e definido como a capacidade que proporciona aos computadores a habilidade de aprender sem requerer programação explícita. Ao longo do tempo, essa área tem evoluído em paralelo com os avanços computacionais, consolidando-se como um elemento crucial na construção de modelos preditivos. Com a profusão de dados, particularmente os de natureza econômica, tornou-se possível a elaboração de modelos de previsão para variáveis macroeconômicas. Este artigo oferece uma introdução a esses tipos de modelos e apresenta um exemplo concreto: a construção de uma previsão para a probabilidade de recessão nos EUA, utilizando as linguagens R e Python.

Previsão econômica com métodos de Suavização Exponencial

Neste texto abordamos métodos de suavização exponencial simples, com tendência e com sazonalidade para finalidade de previsão de séries temporais. Mostramos as diferenças de cada método com exemplos de dados econômicos do Brasil, em aplicações nas linguagens de programação R e Python.

Construindo um modelo para a inflação de alimentos

A inflação de alimentos tem sido uma grande incógnita nos últimos anos, influenciando de forma decisiva o erro de previsão da inflação cheia. Isso nos motivou a replicar um modelo do Banco Central do Brasil, exposto em boxe do Relatório de Inflação de junho de 2016, intitulado Evolução recente da inflação de alimentos. Replicamos o exercício utilizando a linguagem R e Python.
Análise Macro © 2011 / 2026

comercial@analisemacro.com.br – Rua Visconde de Pirajá, 414, Sala 718
Ipanema, Rio de Janeiro – RJ – CEP: 22410-002