Blog

Blog Análise Macro – Desde 2011, encontrando a verdade nos dados

El Niño e IPCA: mensurando impactos climáticos sobre a inflação de alimentos

Será que o El Niño impacta o preço do feijão com arroz no prato dos brasileiros? Para responder esta pergunta estimamos um modelo VAR(p) utilizando dados do Oceanic Niño Index (ONI) e investigamos a decomposição histórica dos choques estruturais.

Coletando dados do Google Trends no R e no Python

Como acompanhar e antecipar tendências de mercado? Independentemente da resposta final, os dados são o meio. Neste artigo, mostramos como obter dados do Google Trends em tempo quase real, utilizando as linguagens de programação R e Python.

Contribuição para a Volatilidade [Python]

A contribuição para a volatilidade fornece uma decomposição ponderada da contribuição de cada elemento do portfólio para o desvio padrão de todo o portfólio. Em termos formais, é definida pelo nome de contribuição marginal, que é basicamente a derivada parcial do desvio padrão do portfólio em relação aos pesos dos ativos. A interpretação da fórmula da contribuição marginal, entretanto, não é tão intuitiva, portanto, é necessário obter medidas que possibilitem analisar os componentes. Veremos portanto como calcular os componentes da contribuição e a porcentagem da contribuição. Vamos criar as respectivas medidas usando a linguagem de programação Python.

Inflação de Serviços vs. Desemprego

A teoria econômica convencional sugere a presença de um trade-off entre inflação e desemprego no curto prazo, comumente conhecido como a Curva de Phillips. Em termos simples, reduções na taxa de desemprego podem resultar em um aumento temporário na inflação. Nesse contexto, a inflação de serviços emerge como uma categoria particularmente relevante devido às suas características distintivas. Para explorar e visualizar a relação entre inflação de serviços e desemprego, conduzimos uma análise utilizando a linguagem de programação Python. Além disso, empregamos o procedimento de Toda-Yamamoto para avaliar a existência de uma relação de causalidade no sentido Granger entre essas variáveis.

Modelo de previsão para grupos do IPCA

Neste artigo investigamos se a previsão desagregada da inflação é capaz de gerar previsões mais acuradas do que a previsão agregada. Utilizamos o Índice Nacional de Preços ao Consumidor Amplo (IPCA) como medida de interesse, aplicando um modelo simples e um modelo de passeio aleatório para comparação. Todo o processo pode ser feito de maneira automatizada utilizando a linguagem de programação R.

Text mining dos comunicados do FOMC: prevendo mudanças na política

Como quantificar sentimentos e emoções a partir de comunicados de política monetária? Neste exercício utilizamos os statements do FOMC para construir um índice de sentimentos, o que permite comparar a “narrativa” com a prática da política monetária, ou seja, mudanças da taxa de juros. Também avaliamos se tal índice é útil em prever mudanças de política através do teste de causalidade de Granger.

Analisando a inflação por faixa de renda no Python

Neste artigo mostramos como coletar dados de inflação segmentados por faixa de renda e como calcular a variação acumulada em 12 meses usando a linguagem de programação Python.

Criando o Fator de Momentum para o Brasil [Python]

Como criar o Fator Momentum para o Mercado Acionário Brasileiro? No post, apresentamos uma forma de criação do Fator usando o Python.

O IBC-Br é um bom preditor do PIB?

Toda vez que a autoridade monetária divulga o seu Índice de Nível de Atividade do Banco Central (IBC-Br), a imprensa costuma dizer que o mesmo antecipa os resultados do PIB. Mas será que isso é verdade? Vamos usar o Python como ferramenta de coleta, tratamento, análise e modelagem dos dados para verificar esse argumento.

Usando LLMs para prever a inflação (IPCA)

Como o surgimento de modelos de inteligência artificial, como os LLMs, estariam as profissões de economistas e cientistas de dados ameaçadas? Neste exercício, tentamos responder esta pergunta ao avaliar o potencial de LLMs em produzir previsões para a inflação no Brasil em diferentes períodos. Comparamos a qualidade das previsões do modelo Google PaLM com as previsões dos profissionais e instituições de mercado, disponibilizadas no relatório Focus do Banco Central.
Análise Macro © 2011 / 2026

comercial@analisemacro.com.br – Rua Visconde de Pirajá, 414, Sala 718
Ipanema, Rio de Janeiro – RJ – CEP: 22410-002